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I. Introduction

IN 1956, 3 years after the discovery that the catecholamines of the adrenal
medulla were stored in a cell particle (11, 42), Euler and Hillarp (27) reported
that some of the noradrenaline in homogenates of ox splenic nerve, ox spleen
and rat spleen was recovered in a particulate fraction after centrifugation. This
finding opened up the possibility of applying biochemical methods to study the
nature of the particle which contains the neurotransmitter. In this review an
attempt has been made to summarise most of the centrifugation experiments
carried out since 1956 and to see what progress has been made in answering the
question: What is a noradrenergic vesicle and what is it made of?

II. Central Nervous System (Table 1a)

As much as 60 % to 80 % of the noradrenaline in brain homogenates is recovered
in a particulate form and most of the amine appears to be present in large par-
ticles, 7.e., those which sediment with mitochondria. These large particles are
recovered after density gradient centrifugation in layers ranging from 0.8 M to
1.2 M of sucrose and, since these layers contain lactate dehydrogenase and
pinched-off nerve endings, it has been concluded that the noradrenaline is present
in synaptosomes (see De Robertis, 22; Whittaker, 101). Hypo-osmotic shock of
the synaptosome-containing fraction releases up to half the noradrenaline into
the supernatant, but it is not possible to conclude that all this soluble noradrena-
line was originally free in the cytosol within the synaptosome; some of it may
have been released from vesicles damaged by hypo-osmotic shock.

Biochemical evidence concerning the nature of the noradrenaline-containing
particles within the synaptosome is meager. Two methods have been used: in
the first, the lysed suspension of synaptosomes is fractionated by differential
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centrifugation (23, 66) and, in the second, the suspension is fractionated by
sucrose density gradient centrifugation (68). Differential centrifugation of lysed
synaptosomes from the hypothalamus showed that a greater proportion of the
noradrenaline is in “large” particles compared with a similar fractionation of
synaptosomes isolated from the whole brain (23). The interpretation of the
gradient experiments is not straight forward because parallel assays of marker-
enzymes for other particles and for the cytosol have not been performed. In the
experiments of Michaelson et al. (68) on the midbrain the distribution of nor-
adrenaline was bimodal: one peak was at the top of the gradient, and was mainly
due to non-particulate noradrenaline; the other peak was in the layer between
0.8 M and 1.2 M of sucrose. It is possible that the noradrenaline in the denser
layers was present in undisrupted synaptosomes, as has been suggested in order
to account for the acetylcholine content of similar fractions from the whole brain
(102); if this is so, it is surprising that the lactate dehydrogenase content of
these layers was no higher than that of adjacent layers. Another possibility is
that the noradrenaline-containing particle recovered in the layers of 0.8 M to
1.2 M of sucrose is a kind of vesicle, similar to the noradrenergic vesicles of
sympathetic ganglia and splenic nerve which also sediment to this region in a
density gradient (see sections IV and V).

III. Sympathetic Ganglia (Table 1b)

There have been very few studies on the subcellular distribution of noradrena-
line in sympathetic ganglia, and those that have been reported are not in good
agreement. Whereas Fischer and Snyder (33) found that 84 % of the noradrena-
line in homogenates of cat superior cervical ganglia remained in the supernatant
after high speed centrifugation, Schiimann et al. (81) found that only 21 % of the
noradrenaline in homogenates of bovine stellate ganglion could not be sedimented.
These discrepancies may be related not only to differences between the tissues
studied; they could also be the result of the different conditions of homogenisa-
tion. In the experiments of Schiimann et al. (81) as much as 66 % of the noradrena-
line was recovered in the low-speed sediment, perhaps because of incomplete
homogenisation of the tissue. Under these milder conditions of homogenisation,
40% of the noradrenaline in the low-speed supernatant of stellate ganglia was
recovered in particles. These particles were recovered in a layer between 1.1 M
and 1.5 M of sucrose after density gradient centrifugation, and were distinguished
from fumarase-containing particles (71).

It should not be assumed, in studies on sympathetic ganglia, that the cell
bodies of postganglionic neurons are the only sites of origin of the catecholamine-
containing particles in homogenates. In many ganglia there are catecholamine-
containing nerve endings (69, 97) which, in the cat superior cervical ganglion,
appear to be the terminals of axon collaterals from postganglionic processes (49).
Furthermore, small intensely-fluorescent cells are also found in sympathetic
ganglia (25, 49, 69). Electronmicroscopic studies on these small cells have shown
that they contain a dense-cored granule very similar to the adrenal chromaffin
granule (24, 65, 83, 100). It is not yet certain what catecholamine they contain,
although there have been suggestions that it might be dopamine (10, 63).



NORADRENERGIC VESICLES 437

Tentatively, it can be concluded that the particle storing noradrenaline in
sympathetic ganglia is similar to the heavy type of noradrenergic vesicle found
in nerve axons and terminals (see sections IV and V), but further biochemical
studies are clearly necessary.

Note added in proof: An important biochemical study on the noradrenergic ves-
icles present in homogenates of bovine stellate ganglion has recently been pub-
lished by Chubb, I. W., De Potter, W. P. & De Schaepdryver, A. F. in Life
Sciences 11 (part 1), 323-333, 1972.

IV. Sympathetic Nerve Axons (Table 1c)

All the published studies on the subcellular distribution of noradrenaline in the
preterminal axons of sympathetic nerves have been done on the bovine splenic
nerve. As in the studies on the stellate ganglion, a large part of the noradrenaline
is often recovered in the low-speed sediment (46, 80, 81): this must be due to
incomplete homogenisation of the tissue. When the homogenate is filtered before
centrifugation, only a small proportion of the noradrenaline is recovered in the
low-speed sediment (21). Between 30% and 50% of the noradrenaline in the
low-speed supernatant is recovered in particles after high-speed centrifugation
(21, 46, 81).

Recent biochemical studies on the subcellular fractions obtained from bovine
splenic nerve have distinguished the noradrenaline-containing particle (norad-
renergic vesicle) from other cell particles and have also provided some informa-
tion about the composition of the noradrenergic vesicle. The noradrenergic
vesicles can be distinguished from large and small lysosomes, from mitochondria,
and from microsomal elements probably derived from the endoplasmic reticulum
and the cell membrane, either by differential or by density gradient centrifuga-
tion (21, 46, 59, 60). In these experiments there was no evidence for more than
one population of particles containing noradrenaline, in confirmation of the
sucrose gradient experiments of Roth et al. (79). Four groups of workers have now
shown that the noradrenergic vesicles of splenic nerve equilibrate in a density
gradient at about the layer of 1.2 M of sucrose (12, 21, 59, 79). This type of vesicle
has been defined as a “heavy” noradrenergic vesicle (79).

Although the noradrenergic vesicle of the splenic nerve could be distinguished
from other cell particles, the biochemical studies (21, 46) showed that the separa-
tion of the different types of particle was by no means complete. For this reason
it was not possible to determine the composition of the noradrenergic vesicle by
analysis of a single fraction; it was necessary to compare the distribution of a
substance with that of noradrenaline between all the fractions obtained by cen-
trifugation. An example of this approach is given by the work of De Potter et al.
(21) in which the distribution of ATP between different fractions of the splenic
nerve is compared with those of markers for different cell particles. Particulate
fractions of splenic nerve have previously been found to contain adenosine tri-
phosphate (ATP) (4, 29, 80, 88, 90) and the molar ratio of noradrenaline to ATP
found by these workers ranged from 3.0 to 5.2. Stjirne (88) and Stjérne and
Lishajko (90) pointed out that the fractions analysed were unlikely to be free of
contamination by other cell particles and that these particles might also contain
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ATP. De Potter et al. (21) concluded from their results that ATP had a distribu-
tion consistent with its presence in both mitochondria and noradrenergic vesicles.
Since the fractions analysed in the earlier studies (quoted above) all contained
mitochondria, the values for the molar ratio of noradrenaline to ATP do not
represent the molar ratio of the substances actually present in the noradrenergic
vesicles. By allowing for the ATP present in the mitochondria, De Potter et al.
(21) estimated that the molar ratio of noradrenaline to ATP in the noradrenergic
vesicles fell within the range 7.5 to 12. This is up to three times the value of
the ratio found in adrenal chromaffin granules (84), and is also higher than the
value of “close to 4’ given in a recent preliminary report on purified splenic nerve
vesicles (41).

A similar approach has been used to identify specific protein components of the
noradrenergic vesicle. The distribution of dopamine 8-hydroxylase in both dif-
ferential (21) and sucrose density gradient centrifugation (21, 46) was very
similar to that of noradrenaline. Material which cross-reacted with antiserum
to bovine adrenal chromogranin A also had a distribution, in two types of dif-
ferential centrifugation, similar to that of noradrenaline (21). These observations
provide unequivocal evidence that dopamine S-hydroxylase and a protein like
chromogranin A are components of the noradrenergic vesicle. Earlier work had
shown that dopamine 8-hydroxylase (91) and chromogranin A (4) were present
in a particulate fraction from a splenic nerve homogenate, but although this
fraction contained the noradrenergic vesicles it also contained other cell particles.

Dopamine g-hydroxylase and chromogranin A were present in the particle-free
supernatant of splenic nerve as well as in the vesicles (21). The occurrence of both
these proteins, as well as noradrenaline, in the supernatant can be accounted for
~ in two ways. Either the proteins and noradrenaline exist both in particles and in
the soluble axoplasm, or they are normally confined to the vesicles but are re-
leased from them during homogenisation and centrifugation. In the experiments
of De Potter et al. (21), the proportion of the dopamine B-hydroxylase activity
in the supernatant was more than could be accounted for by the lysis of nor-
adrenergic vesicles, just as was found by Viveros et al. (95) for the adrenal me-
dulla. It is possible, therefore, that in both splenic nerve and adrenal medulla
there is a proportion of the total dopamine 8-hydroxylase normally in the cytosol.
However, the distribution of chromogranin A among fractions of the adrenal
medulla is consistent with the localisation of most, if not all, of it in the chro-
maffin granules (57). The work of De Potter et al. (21) suggests that the chromo-
granin of splenic nerve is present only in the noradrenergic vesicles, because the
amount of chromogranin A found in the final supernatant is close to that which
would be released upon lysis of the vesicles damaged during homogenisation.

The experiments of Hortnagl et al. (46) and De Potter et al. (21) were based
on the assumption that it was not possible to isolate noradrenergic vesicles suffi-
ciently free from other cell particles to permit direct analysis of their composition.
However, experiments by Lagercrantz et al. (60) have shown that the use of
D,0 instead of HsO in the sucrose density gradients improves the separation of
noradrenergic vesicles from other membranous material. Lagercrantz (59) has
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made detailed studies on the composition of a noradrenaline-rich fraction ob-
tained by this method, and has estimated that at least 20 % of the protein in the
fraction is present in noradrenergic vesicles. Although the fraction is richer in
noradrenergic vesicles than any isolated previously, caution should still be exer-
cised in drawing conclusions about the composition of noradrenergic vesicles
from analysis of this fraction alone.

Provisionally, it can be concluded that most of the noradrenaline in the splenic
nerve is stored within a population of noradrenergic vesicles of the heavy type
and that these vesicles contain ATP, dopamine 8-hydroxylase and chromogranin
A.

V. Sympathetically Innervated Tissues (Table 1d)

A problem the biochemist has to consider when studying homogenates of
sympathetically innervated tissues is whether all the particle-bound catechola-
mine was derived from the neurons. Two other possible sites of origin have to be
considered: first, extra-adrenal ‘‘chromaffin cells” or similar small, intensely-
fluorescent cells, which have been found in the heart (34, 48, 54, but see 1);
second, the specific secretory granules of atrial muscle cells (70, 87, but see 51).
The simplest way of showing that the catecholamines present in particulate
fractions of an homogenate are derived from the nerve is to examine the same
fractions prepared from the tissue after chronic sympathetic denervation. This
approach may not be easily applicable to tissues containing short adrenergic
neurons, but a surgical method of sympathectomy has recently been described
for the vas deferens (6). The catecholamine content of denervated tissues is
usually considerably less than 10 % of that of the normal tissue.

It can be seen from table 1d that in many studies on tissues innervated by
sympathetic nerves, a large proportion of the noradrenaline was recovered in
the low-speed sediment, just as in the studies described above on ganglia and on
splenic nerve. It is, of course, likely that this was due to incomplete homogenisa-
tion of the tissue and to trapping of small particles in the large sediment of non-
nervous tissue fragments. However, there are two reports that sediments ob-
tained from homogenates of vas deferens contain intact, pinched-off nerve endings
(F. Clementi, see 101; 8); these are similar to the synaptosomes obtained from
the central nervous system. The formation of synaptosomes from peripheral
nerves could complicate the interpretation of centrifugation studies, but it seems
unlikely that more than a trace of the noradrenaline in the homogenate will be
present in such particles, because the homogenisation conditions are usually far
from gentle. Nevertheless, in future studies the possible presence of synaptosomes
will have to be monitored by fluorescence and electronmicroscopy, and by bio-
chemical methods such as analysis for lactate dehydrogenase and dopa decar-
boxylase.

The proportion of the noradrenaline in the low-speed supernatant of homoge-
nates of sympathetically innervated tissues that is recovered in particles varies
widely (16 %-74%), as can be seen from table 1d. The low values reported in
some of the early experiments (27) may be explained, in part, by the low cen-
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trifugal force used, which was not sufficient to sediment all the particles of micro-
somal size (diameters of 1000 A or less). It is, in fact, significant that in many
studies as much as 50% to 75% of the noradrenaline in the low-speed superna-
tant is recovered in particles. Since a certain proportion of the noradrenaline in
the final supernatant will have come from particles damaged during homogenisa-
tion and centrifugation, it can be concluded that the particle-free pool of nor-
adrenaline may not represent more than about 20 % of the total.

What kind of particles store the moradrenaline in sympathetically innervated
trssues? Potter and Axelrod (76, 77) found that when tissue homogenates were
centrifuged for a short time on a sucrose density gradient, the noradrenaline-
containing particles sedimented very slowly, remaining with the microsomes at
the top of the gradient tube. By this means they could be distinguished from
mitochondria, which sedimented more rapidly and were recovered nearer the
bottom of the tube. Several subsequent studies (see table 1d) on the distribution
of noradrenaline between fractions obtained by differential centrifugation have
confirmed that much of the noradrenaline is present in particles which sediment
in the microsomal fraction: the proportion of noradrenaline in this fraction is
usually equal to, or greater than, that recovered in the crude mitochondrial
fraction. The noradrenaline-containing particles of these tissues are, therefore,
distinct from the bulk of the mitochondria in the tissue. However, most of the
mitochondria do not come from the sympathetic nerve terminals. It has been
found that mitochondria in axons of the splenic nerve sediment more slowly than
do the mitochondria in non-nervous tissues (21) and so some of the neuronal
mitochondria will be recovered in the microsomal fraction of homogenates of
innervated tissues. This is one of several possible explanations of why the micro-
somal fraction of vas deferens contained a greater proportion of mitochondrial
enzymes than the microsomal fraction of liver did in the experiments of Jarrott
and Iversen (52), since the vas deferens is a richly innervated tissue. In the
density gradient experiments of Jarrott and Iversen (52) it was possible to dis-
tinguish the noradrenaline-containing particles of vas deferens both from mono-
amine oxidase present in intact mitochondria, recovered in denser layers in the
gradient, and from the microsomal monoamine oxidase which was recovered in a
less dense layer of the gradient. It can be concluded that the noradrenaline-
containing particles of sympathetically innervated tissues are mainly of micro-
somal size, and that, at least in the vas deferens, it is possible to distinguish them
from other components of the microsomal fraction. Is the noradrenaline of these
tissues, which is derived mainly from the terminal varicosities of the neurons,
stored in one type of particle, or is there more than one kind of noradrenergic
vesicle in nerve terminals?

The helerogeneity of the paticulate store of noradrenaline in sympathetically in-
nervated tissues is suggested by a number of observations with density gradients
which, at first sight, appear somewhat contradictory (see table 1d). Some of the
apparent contradictions are accounted for by different experimental conditions.
Two points in particular have to be borne in mind when interpreting the results
of gradient centrifugation experiments: 1) the nature of the material applied to
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the gradient, which varies from whole homogenates to a resuspended microsomal
pellet, and 2) the time of centrifugation and the centrifugal force applied; thus,
some experiments were designed to separate particles solely by virtue of their
different rates of sedimentation (76, 77) whereas in others the aim was to ap-
proach the equilibrium density of the particles. In the original density gradient
experiments of Potter and Axelrod (76, 77) on rat heart homogenates a con-
siderable part of the total noradrenaline was found at the bottom of the gradient,
in addition to that in the “microsomal” layer at the top; the authors concluded
that the noradrenaline in the pellet was in incompletely homogenised tissue.
However, density gradient experiments on the low-speed supernatant of dog heart
homogenates also showed a bimodal distribution of noradrenaline: 54 % remained
near the top of the gradient (0.25 M-0.4 M of sucrose) and 30 % was recovered
lower down in the layer of 1.0 M to 1.2 M of sucrose (37). The latter authors
used the same type of density gradient as Potter and Axelrod (76) but centrifuged
for 2 hr instead of 30 min. A further indication that, in the heart, there may be
more than one type of noradrenaline-storing particle was the finding by Taylor
et al. (92) of two peaks of radioactivity in a gradient after infusion of [*H] nor-
adrenaline into the cat heart. This observation was confirmed by Roth et al. (79)
in experiments on the rat heart and these authors also determined the distribu-
tion of endogenous noradrenaline which likewise had a bimodal distribution: one
peak was at the layer of 0.47 M of sucrose, the other at the interface of 1.0 M
and 2.0 M of sucrose; these authors introduced the terminology ‘light”’ and
“heavy,” respectively for the two kinds of particle. Accumulation of material
above a layer of 2.0 M of sucrose is difficult to interpret since it may be due to
a second population of particles, or simply to a concentration of the “tail” of a
peak of noradrenaline given by the lighter particles. A bimodal distribution of
endogenous noradrenaline in sucrose gradients from rat atria, but not from the
ventricles has also been reported by Sosa-Lucero et al. (87).

The tissue where a bimodal distribution of noradrenaline after gradient
centrifugation is most easily demonstrated is the spleen. In the dog spleen, the
second peak of noradrenaline, at about the layer of 1.2 M-sucrose, comprises
about half the noradrenaline applied to the density gradient (19, 20). In similar
experiments on the cat spleen Bisby and Fillenz (8) found a bimodal distribution
of noradrenaline (peaks at layers of 0.7 M and 1.0 M of sucrose), whereas ho-
mogenates of rat vas deferens treated in the same way only gave a single peak
of noradrenaline in the region of 0.7 M of sucrose.

Before accepting these biochemical findings as evidence for two populations
of noradrenergic vesicles in the nerve terminals, several other possibilities have
to be considered. First, it must be shown that both noradrenaline-containing
particles come from the nerve. This has so far only been demonstrated by Chubb
et al. (19) who found that both types of particle were absent in a dog spleen
that had been denervated and that the particles did not form artifactually upon
addition of noradrenaline to the homogenate before fractionation. The sugges-
tion by Sosa-Lucero et al. (87) that, in the heart, some noradrenaline is stored
in the “secretory granules” of atrial muscle cells could possibly be tested by
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carrying out experiments after sympathetic denervation. However, since Potter
el al. (78a) found that denervation of the dog heart led to a fall in noradrenaline
content to 1.2 % of normal, although the ‘‘secretory granules’” were still present
in muscle cells, the amount of noradrenaline in these particles must be very
small. (Of course, the possibility remains that the granules in muscle cells take
up noradrenaline released from the nerves.) The morphological criteria used by
Sosa-Lucero et al. (87) to support their claim are insufficient since their micro-
graphs show that, in addition to secretory granules from the muscle, the nor-
adrenaline-rich fraction from atria also contained much smaller particles, some
of which look like the large dense-cored vesicles of sympathetic nerves. Never-
theless, the observation that the second population of noradrenaline-containing
particles is characteristic of the atrium rather than the ventricle is interesting
and deserves further study. Finally, the possibility that any noradrenaline-
containing particles which enter the denser layers of a gradient (1.0 M to 1.2 M
of sucrose) might be synaptosomes must be considered. Experiments in which
the entire homogenate is placed on a density gradient are suspect, since not
only will the homogenate contain large tissue fragments of non-nervous origin,
which might trap the noradrenergic vesicles, it will also contain any synaptosomes
which may have been formed. It is important to sediment the large particles
first, as was done in the studies of Chubb et al. (19) and of Bisby and Fillenz (8),
even if this means losing a proportion of the noradrenaline-containing particles.
The loss of noradrenergic vesicles by trapping in low- to medium-speed sedi-
ments can be minimised by resuspending these and recentrifuging (21). There
have, so far, been no biochemical studies on density gradient fractions to test
for the presence of entrapped soluble axoplasm which will be present in synapto-
somes.

VI. Correlation of Biochemical and Morphological Observations

Two types of dense-cored vesicle have been distinguished in electron micro-
graphs of sympathetic nerves (for reviews see 32, 35, 45). It is now considered
likely, from electron histochemical studies, that not only the small dense-cored
vesicle but also the large dense-cored vesicle (43, 50, 94) contains a primary
catecholamine. Whereas nerve terminals contain both types of vesicle, pre-
terminal axons contain mainly (44, 56) or exclusively (31, 36, 58) one type of
vesicle, which is probably identical with the large dense-cored vesicle of the
nerve terminals. The biochemical studies described above have shown that
axons of the splenic nerve contain only one type of vesicle, which equilibrates at
the density of 1.2 M of sucrose. It is possible, therefore, that the particle in
sympathetically innervated tissues, which also equilibrates in a gradient close
to the level of the 1.2 M of sucrose layer, may be the large dense-cored vesicle
present in terminals and in the preterminal axons within the organ. The second
type of vesicle, found only in sympathetically innervated tissues, which is
recovered in less concentrated layers of sucrose after gradient centrifugation,
may be the small dense-cored vesicle which the microscopists find is specifically
located in nerve terminals.
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These suggested correlations could be tested by electronmicroscopic studies on
isolated subcellular fractions, but most of the microscopic studies so far reported
have simply confirmed the gross contamination of the fractions by other cell
particles, which is indicated by the low concentration of noradrenaline per
weight of protein (see table 2 and below). However, there are some qualitative
studies which are consistent with the above correlation. Thus, small dense-cored
vesicles were found in the fractions containing the light noradrenergic vesicles
of rat heart (74) and of rat vas deferens (2, 8), whereas large dense-cored vesicles
were seen in the fraction containing the heavy noradrenergic vesicles of splenic
nerve (58, 79, 93) and of rat vas deferens (8). Further support for the proposed
correlation was provided by Bisby and Fillenz (8), who found that nerve termi-
nals in the cat spleen contain far more (about 20% of the total vesicles) large
dense-cored vesicles than do the terminals in the vas deferens, where the pro-
portion is only 4 %. In the biochemical experiments, a definite peak of noradren-
aline in the denser layers of the sucrose gradient was found only in experiments
on homogenates of the spleen (8). As the biochemical methods for purifying the
vesicles improve it will be interesting to see whether this correlation, at present
only tentative, is substantiated by quantitative morphological analyses of the
fractions.

VII. Composition of Noradrenergic Vesicles

The biochemical studies described above have shown how hazardous it is to
conclude that the noradrenergic vesicle contains a substance just because that
substance was present in a noradrenaline-rich subcellular fraction. One indication
of the degree of contamination of the noradrenaline-rich fractions by other cell
particles can be obtained by comparing the ratio of the amount of noradrenaline
to that of protein in each fraction, with the ratio found for purified noradrenaline-
containing adrenal chromaffin granules: this has been done in table 2. The frac-
tions with the highest concentrations of noradrenaline, those from the splenic
nerve, vas deferens and heart, contain 10 to 100 nmoles of noradrenaline per
milligram of protein, whereas the noradrenaline-containing chromaffin granules
of bovine adrenal medulla contain 2500 nmoles of noradrenaline per milligram
of protein (3). It can also be seen, from table 3, that the noradrenaline-rich
fraction from splenic nerve contains several hundred times as much lipids per
mole of catecholamines as do purified chromaffin granules.

A comparison of the amount of noradrenaline per unit of protein or lipid in a
fraction isolated from nerves with these ratios in chromaffin granules should
only be used as a rough indication of the purity of the fraction. There are many
unknown factors, e.g., we do not know whether the small noradrenergic vesicles
contain soluble proteins, or whether the concentration of noradrenaline in the
interior of a noradrenergic vesicle is necessarily the same as that inside a chro-
maffin granule. Allowance should also be made for the different sizes of the
particles. The importance of this can be seen from table 4, where the proportion
of the total volume of each type of particle that is occupied by the membrane
is given. It is clear that a considerable part of the protein in a small noradrenergic
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TABLE 2

Noradrenaline and protein content of noradrenaline-rich subcellular
fractions from different tissues

Tissue Nonm?é%olu)/ Method for Protein Reference
Ox adrenal medulla 2500 Nitrogen 3
Rat brain stem 0.14 Folin 66
Rat brain 0.04 Folin 23
Rat anterior hypothalamus 0.22 Folin 23
Rat heart .101 Folin 75
Pig hypothalamus 0.06 Nitrogen 72
Bovine stellate ganglion 0.65 Nitrogen 81
Bovine stellate ganglion 0.48 Folin 71
Bovine splenic nerve 2.9 Nitrogen 81
Bovine splenic nerve 4.9 Folin 12
Bovine splenic nerve 2.9 Biuret 46
Bovine splenic nerve 5.0 Folin 4
Bovine splenic nerve 19.9 Folin 60
Bovine splenic nerve 9.1 Folin 21
Guinea-pig heart 0.4 Nitrogen 82
Rat vas deferens 1.5 Folin 52
Rat heart 0.0016 Biuret 87
Rat vas deferens up to 14.5 Folin 8
Cat spleen up to 2.4 Folin 8

* Only a few authors have given the amount of noradrenaline per milligram protein
in the homogenate before fractionation. Potter (75) found a value of 0.07 nmoles/mg pro-
tein for rat atria. M. Fillenz (personal communication) has provided the following figures:
rat heart, 0.029 nmoles/mg protein; cat spleen, 0.073; rat hypothalamus, 0.053; rat vas
deferens, 0.98. De Potter et al. (21) found a value of 0.92 for bovine splenic nerve.

TABLE 3

Composition of two noradrenaline-rich particulate fractions obtained from homogenates of

bovine splenic nerve*

Splenic Nerve Fraction
. . Adrenal Chromaffin
Constituent Units Fraction 3 | FractionIr | Cranules (Purified)
from ref. 21 from ref. 59
Catecholamine nmole 1 1 1
ATP nmole 0.132 ca. 0.25 0.22
Dopamine g-hydroxylase pmole/20 min 443 900 7.25
Chromogranin A ug 0.26 1.28 0.10
Protein Hg 110 50 0.29
Lipid-phosphorus nmole 161 31 0.18
Cholesterol nmole 52 14 0.10

* The composition of each fraction is expressed per nmole of catecholamine. The data
for bovine adrenal chromaffin granules were calculated from figures in reference 84, except
for the activity of dopamine 8-hydroxylase (21).
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TABLE 4

Size of catecholamine-containing particles and the proportion of their volume occupied by
the membrane

Proportion of _|Volume of Interior |¥olume of Mem-
f . b Relat
Particle Diameter (A)* gil‘i‘m;n%:::;g"d tﬁ,ﬂ‘:t&i%& ﬁ%:;br:nelzfe ‘to

2 romaffin
hickness 70 maffin Granule Granule
Chromaffin granule 3000 13.49, 1 1
Large noradrenergic vesicle 700 48.8% Yas ¥,
Small noradrenergic vesicle 443 67.9% a3 %

* The diameters of the noradrenergic vesicles are those reported by Geffen and Ostberg
(36) for vesicles in the non-terminal axons and terminal varicosities of the cat splenic
nerve. The membrane thickness is of the membrane of large noradrenergic vesicles in the
ox splenic nerve (58).

vesicle will be present in its membrane. Furthermore, the volume of the interior
of the vesicle (that part of the vesicle which presumably contains the noradren-
aline) relative to that of the whole particle is less for the noradrenergic vesicles
of nerves than for adrenal chromaffin granules. One would not, therefore, expect
to find the same ratio of noradrenaline to membrane components (lipids and
proteins) in the three types of particle. Let us assume, for the sake of argument,
that the concentration of noradrenaline in the interior of each type of particle
is the same; the large noradrenergic vesicle will, then, only contain about 14,
and the small noradrenergic vesicle will only contain about 143, of the amount
of noradrenaline per unit volume of membrane found in the adrenal chromaffin
granule (see table 4).

Large dense-cored vesicles. In order to identify a component of the noradrener-
gic vesicle it is necessary to show that it has a distribution between subcellular
fractions very similar to that of noradrenaline. For the noradrenergic vesicles of
splenic nerve axons this has so far only been done for ATP, chromogranin A and
dopamine g-hydroxylase (see above). The amount of each of these substances in
particulate fractions isolated from bovine splenic nerve by two groups of workers
(21, 59) is given in table 3 relative to the amount of noradrenaline. Although
the amounts of ATP, chromogranin A and dopamine B-hydroxylase are not
identical in the two preparations, it is gratifying that they are at least of the
same orders of magnitude. When the composition of the splenic nerve particles
is compared with that of adrenal chromaffin granules, which is also given in
table 3, the most striking differences are found in the amounts of proteins, lipids
and dopamine B-hydroxylase activity relative to noradrenaline. As discussed
above, the higher content of protein and lipid in the nerve particles could reflect
not only contamination of the fraction but also the difference in size between
noradrenergic vesicles and chromaffin granules. A third possibility, pointed out
by Stjiarne (89) and Lagercrantz (59), is that the noradrenergic vesicles might
contain a lower concentration of noradrenaline than the adrenal chromaffin
granules. The much higher level of dopamine S-hydroxylase activity found in
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the fractions from splenic nerve could possibly be because the membrane of
noradrenergic vesicles contains a higher concentration of this enzyme than the
membrane of chromaffin granules does. However, it is equally likely that this
large difference in the ratio of dopamine B-hydroxylase activity to the amount
of catecholamine is due to a much lower concentration of catecholamine within
the nerve vesicles.

Much less is known about the composition of large dense-cored vesicles in the
terminal varicosities of sympathetic neurons. The only component, in addition
to noradrenaline, that has been identified is dopamine B-hydroxylase: this
enzyme has the same distribution as the heavy peak of noradrenaline in density
gradient fractions after centrifugation of particles from dog spleen (19). A peak
of dopamine B-hydroxylase activity, but not of noradrenaline, has been found
in density gradient fractions that contain large dense-cored vesicles after cen-
trifugation of particles from rat vas deferens (9). It is possible that in studies on
tissues, such as the vas deferens, where the proportion of large dense-cored
vesicles in terminals is low (8, 30) the presence of this type of vesicle in fractions
will be more easily revealed by its content of dopamine 8-hydroxylase than by
its content of noradrenaline. The terminals of the splenic nerve contain a con-
siderable proportion of large dense-cored vesicles (8) and these can be distin-
guished from the light vesicles by density gradient centrifugation (8, 19, 20).
It is particularly interesting that the ratio of the amount of noradrenaline to the
activity of dopamine B-hydroxylase in the heavy vesicles of dog splenic nerve
terminals is about 10 times that in the noradrenergic vesicles of the dog splenic
nerve azons (see 20). This finding supports suggestions (59, 89) that the large
vesicles in preterminal axons are relatively deficient in noradrenaline but can
take up and store more noradrenaline when they reach the terminals.

Small dense-cored vesicles. Very little is known about the composition of the
light noradrenergic vesicles of nerve terminals (see review by Potter, 74) be-
cause most of the analyses have been done on a single fraction. Analysis of such
a fraction from rat heart showed that it contained ATP and dopamine g-hy-
droxylase (75, 78), but no studies have yet been published showing that the dis-
tribution of ATP and dopamine 8-hydroxylase parallels that of noradrenaline in
fractions from the heart. In the microsomes of the rat vas deferens, the distri-
bution of ATP in a density gradient (0.32 M to 1.4 M of sucrose) paralleled
that of noradrenaline: the molar ratio (noradrenaline/ATP) in fractions con-
taining the “light” vesicles ranged from 2.2 to 3.7 (64). However, a large amount
of ATP was also found in the pellet at the bottom of the density gradient and
this was only associated with a trace of noradrenaline.

Chubb et al. (19) have carefully analysed the distribution of dopamine 8-hy-
droxylase in density gradients of a microsomal fraction from dog spleen. Two
peaks of dopamine B-hydroxylase activity were obtained: one peak corresponded
closely to that given by the heavy noradrenergic vesicle, but the other peak was
in a less dense region of the gradient than the peak of noradrenaline in the light
noradrenergic vesicle. The authors suggested, therefore, that the light noradre-
nergic vesicle does not contain dopamine B-hydroxylase. However, it should not



NORADRENERGIC VESICLES 453

be forgotten that a similar, but less marked, difference occurs in the density
gradients of fractions from adrenal medulla where the peak of dopamine 8-hy-
droxylase activity is found in a less dense layer than that of the catecholamines
(96). The explanation offered by Viveros et al. (96) for the situation in the ad-
renal medulla may, perhaps, apply a fortior? to the nerve terminal: the dopamine
B-hydroxylase-containing particles may become denser as they fill up with
noradrenaline. (Alternatively, the noradrenaline may leak out of the vesicles
during isolation more easily than the dopamine B-hydroxylase does.) Preliminary
studies on the rat heart and vas deferens indicate a much closer, but not quite
identical distribution of dopamine S8-hydroxylase and noradrenaline in density
gradients of the light noradrenergic vesicles (9).

VIII. Conclusions

What has been learned about the noradrenergic vesicle in the 15 years since
its discovery by Euler and Hillarp (27)? No reviewer likes to draw hard and fast
conclusions from evidence which is at times contradictory and which is always
incomplete. However, an attempt has been made to summarise below some of
the most important findings.

Central nervous system. Biochemical evidence concerning the nature of the
noradrenaline-containing particles in the central nervous system is meagre.
Although it has been shown that noradrenaline is present in synaptosomes and
that some of this synaptosomal noradrenaline is in particles within the nerve
ending, there is no evidence whether or not the nerve endings contain more
than one type of noradrenergic vesicle.

Peripheral nervous system. Much more is known about the noradrenergic
vesicles of peripheral sympathetic neurons. Our present knowledge can be
summarised as follows:

1) Most of the noradrenaline is stored in particles.

2) The noradrenaline-containing particles of non-terminal axons of the splenic
nerve can be distinguished from other cell particles, such as mitochondria, lyso-
somes and membrane fragments.

3) The particulate store is heterogeneous: noradrenaline is found in the light
noradrenergic vesicle (possibly identical with the small dense-cored vesicle
described by electron microscopists) and in the heavy noradrenergic vesicle
(possibly identical with the large dense-cored vesicle).

4) In the cell body and non-terminal axons, the heavy vesicles are the pre-
dominant type.

5) In the terminal varicosities both heavy and light noradrenergic vesicles
occur, but the latter store most of the noradrenaline.

6) The heavy noradrenergic vesicles of non-terminal axons contain ATP,
chromogranin A and dopamine S8-hydroxylase. The heavy vesicles in the ter-
minals also contain dopamine g-hydroxylase, but it is not yet certain whether
the light vesicles contain this enzyme. There is some evidence that the light
vesicles contain ATP.

7) Preliminary observations suggest that the heavy vesicles in the nerve
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terminals contain a higher concentration of noradrenaline than the heavy vesi-
cles in the non-terminal axons.

This knowledge, gained mainly by the application of biochemical methods,
is not only of interest for what it tells us about the nature of the storage particles
that contain noradrenaline; it has already been useful in studies on the mecha-
nism of release of noradrenaline from peripheral neurons. These studies have
shown that vesicle proteins (dopamine 8-hydroxylase and chromogranin A) are
released upon electrical stimulation of the nerve (for reviews see 35, 85, 86).
Now that it is possible to identify the different sites of storage of noradrenaline
in neurons it is likely that much new information will be obtained about the
mechanism of action of those drugs that modify the amount of noradrenaline in
nerve terminals and that influence the release of the neurotransmitter.

Acknowledgment: The author is much indebted to Dr. H. Winkler for his suggestions
and for reading the manuscript of this review.
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